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Broad histogram method: Extension and efficiency test
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~Received 5 August 1999; revised manuscript received 25 January 2000!

Compared to standard histogram techniques, the broad histogram method allows us to increase the efficiency
of Monte Carlo simulations by a tremendous amount. This gain of efficiency is achieved by measuring
simulation averages of particular system observables~different from those used in standard histogram tech-
niques!, while the algorithm of the simulation can be left unchanged. In this paper, the broad histogram method
is reformulated in a more mathematical and precise way. Furthermore, the method is extended to estimate the
density of states as a function of more than one parameter. A quantitative investigation of the gain of efficiency
of Monte Carlo simulations is performed. For the broad histogram method, we find a gain of efficiency which
amounts to orders of magnitude in comparison to the standard histogram method.

PACS number~s!: 02.70.Lq, 05.10.2a
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I. INTRODUCTION

In performing a Monte Carlo simulation, one or seve
observables are chosen, for which a simulation averag
recorded. A common choice for such an observable gi
rise to a standard histogram as introduced by Salsburget al.
@1# and popularized by Swendsen and Ferrenberg@2#. The
histogram allows for the estimation of the density of sta
V, from which a variety of physically interesting syste
properties can be computed. The broad histogram me
~BHM! as recently suggested by Oliveiraet al. @3# likewise
enables an estimation of the density of states but leads
considerable reduction of the computing time. This reduct
is achieved by measuring simulation averages of partic
~system! observables, different from those which yield
standard histogram, while the algorithm of the simulati
can be left unchanged.

From the method presented in@3#, the density of statesV
can be computed as a function of one variable, the energE.
In general, this does not enable the determination of the
tire set of equations of state describing the behavior of
system. The entire set can be obtained from the densit
states as a function of more than one parameter. To this
aim, an extension of the BHM is required. For the case of
standard Ising model, such an extension is shown to yield
density of statesV(E,M ) as a function of the energyE and
the magnetizationM.

If the standard histogram method is applied to magn
systems, the number of microstates with energyE and mag-
netizationM is counted during the course of simulation, i.
every microstate yieldsoneentry in an energy-magnetizatio
histogram. From this histogram, the density of sta
V(E,M ) can be computed~see Sec. II C!.

In the BHM, each microstate of the Monte Carlo samp
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is exploited in a much more sophisticated way. For the p
ticular realization of the method introduced in Sec. III, th
means that in an extended histogram, which is defined as
simulation average of the so-called transition observable
be introduced below, the number of possible transitions
recorded from particular microstates~in the Monte Carlo
sample! with energyE and magnetizationM to ‘‘neighbor-
ing’’ microstates~not necessarily in the Monte Carlo sampl!
with energyE6DE and magnetizationM6DM , which can
be reached from the particular microstates of the sample
applying single spin-flip operations. Again, from the simu
tion averages of the transition observables, the density
states can be computed~see Sec. II D!.

The advantage of this method is that every microstate
the Monte Carlo sample is investigated much more ext
sively than by the standard histogram technique. Theref
given a certain sample of microstates, the density of sta
can be calculated more accurately from simulation avera
of the transition observable than by standard methods. A
tionally, as it is the selection of microstates using pseudor
dom numbers which is costly in computer time, the increa
in computer time from such a more extensive exploration
the chosen microstates is absolutely negligible~at least in the
case of the particular realization of the method introduc
below!. However, the effect on the data quality is significa
and can amount to orders of magnitude. In the case of
examples studied in this paper, we find an efficiency gain
roughly two orders of magnitude. This efficiency gain can
expected to grow proportional toLd/2, the square root of the
volume of the system. It is this enormous gain of efficien
which should motivate the reader to focus on the underly
formalism, which is indeed simple to implement in a sim
lation, but is somewhat heavy to formalize.

In this paper we show that it is straightforward to exte
BHM to more than one parameter. Quantitative investig
tions of the efficiency of this method in comparison to sta
dard histogram methods are presented. Sections II A and
aim to familiarize the reader with the language used throu
out this paper and with some aspects of the Monte Ca
7422 ©2000 The American Physical Society
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procedure. In Sec. II C, the standard histogram techniqu
reviewed in the context of the calculation of the density
states. In the context of the BHM, the transition observabl
introduced in Sec. II D. In Sec. II E, it is shown that th
observable includes the one presented in@3# as a special
case. The rest of the paper~Sec. III! is devoted to a compari
son of the efficiency of computer simulations using the BH
in contrast to a standard histogram technique. This is d
for the examples of 2d- and 3d-Ising systems, where we fin
a gain of efficiency of approximately 40 in the 322 Ising
system and of approximately 250 in the 103 Ising system.

II. CALCULATING THE DENSITY OF STATES
BY MONTE CARLO SIMULATION

A. Conventions and notation

In this paper, we use the language of discrete Ising s
tems with nearest-neighbor interactions on hypercubic
tices of linear sizeL in d spatial dimensions with Hamil
tonian

H~S!ª2J(
^ i , j &

s is j2h(
i

s i5:E~S!2hM~S!, SPGLd,

~1!

whereh denotes an external magnetic field.E(S) is the in-
teraction energy andM (S) the magnetization of the particu
lar microstate S5s1 ,s2 , . . . ,s i , . . . ,sLd ~5particular
configuration of the spinss i , i 51,2, . . . ,Ld on theLd lat-
tice! with s iP$21,11%. The configuration space of th
Ising system is denoted byGLd, and ^ i , j & indicates a sum-
mation over all pairs of nearest neighbors. The discreten
of the Ising systems gives rise tominimal energy and mag-
netization spacings, denoted byDE and DM , respectively.
Summations over the interaction energyE ~magnetization
M ) cover all energy~magnetization! values accessible fo
the system. In general, in order to simplify the notation, s
tem size dependences are not stated explicitly. In what
lows, we set the Ising coupling constantJ[1 and Boltz-
mann’s constantkB[1.

B. Some remarks on Monte Carlo simulations

For a Monte Carlo simulation, a Markov process is set
on configuration spaceGLd with a certain problem-adapte
stationary distributionŵ(S), which is assumed to depen
only on the interaction energyE and the magnetizationM of
the microstateS, i.e., ŵ(S)5w(E(S),M (S)). @It is straight-
forward to extend the formalism introduced in the followin
sections to the case of a more general stationary distribu
which, of course, may depend on system observables o
than the interaction energyE and the magnetizationM. The
restricting assumptionŵ(S)5w„E(S),M (S)… is made only
for the sake of notational simplicity#. From the Markov chain
$S%N of length N ~which, at least in the limit of infinitely
long samples, is distributed according toŵ), the simulation
averageof an arbitrary functionf : GLd→R on configuration
space can be obtained:
is
f
is

e

s-
t-

ss

-
l-

p

n
er

^ f ~S!&sim,w~$S%N!ª
1

N (
SP$S%N

f ~S! →
N→`

(
SPGLd

f ~S!ŵ~S!.

~2!

Of course, the simulation average depends on the statio
distribution and, unless the length of the Markov cha
reaches infinity, on the particular sample$S%N .

C. The standard histogram method

The histogramHw(E,M ;$S%N), which is proportional to
the number of microstates of the sample with interact
energyE and magnetizationM, is given by the simulation
average of the observabledE(S),EdM (S),M :

Hw~E,M ;$S%N!5^dE(S),EdM (S),M&sim,w~$S%N!

5
1

N (
SP$S%N

dE(S),EdM (S),M

→
N→`

(
SPGLd

dE(S),EdM (S),Mw„E~S!,M ~S!…

5V~E,M !w~E,M !, ~3!

whered denotes Kronecker’s delta symbol. Since the und
lying stationary distributionw is known ~at least apart from
an irrelevant factor!, the density of states is obtained as

V~E,M !ª (
SPGLd

dE(S),EdM (S),M

5 lim
N→`

Hw~E,M ;$S%N!/w~E,M !, ~4!

or — more realistically for a computer simulation — at lea
an estimator forV is obtained by omitting the limiting pro-
cedureN→`.

D. The broad histogram method

In this section, it is shown that the density of states can
obtained from simulation averages of certain so-called tr
sition observables defined below, which have the adva
geous feature that they enable the estimation of the den
of states in a much more efficient way than the stand
histogram method does.

As a preliminary step, let us define themicrocanonical
averageof a system observablef (S):

^ f ~S!&~E,M !ª lim
N→`

^ f ~S!dE(S),EdM (S),M&sim,w~$S%N!

Hw~E,M ;$S%N!

5
1

V~E,M ! (
SPGLd

dE(S),EdM (S),M f ~S!. ~5!

Let A be a set of operators acting on configuration sp
GLd,

A#$A:ASPGLd ; SPGLd%. ~6!
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The transition observable NA
i , j (S) is defined as the number o

operatorsAPA acting on the particular microstateS which
result in microstatesS̃ with interaction energyE(S̃)5E(S)
1 iDE and magnetizationM (S̃)5M (S)1 j DM :

NA
i , j~S!ª (

S̃PGLd

dE(S̃),E(S)1 iDEdM (S̃),M (S)1 j DM

3 (
APA

dAS,S̃ , i , j PZ. ~7!

~See Fig. 1 for an illustration of the thus defined obse
ables.! Then, for any setA of operators which satisfies

0Þ (
SPGLd

dE(S),EdM (S),MNA
i , j~S!

5 (
SPGLd

dE(S),E1 iDEdM (S),M1 j DMNA
2 i ,2 j~S!, ~8!

the density of statesV(E,M ) can be calculated from th
microcanonical averages~5! of the transition observables~7!
to yield

V~E,M !5
^NA

2 i ,2 j~S!&~E1 iDE,M1 j DM !

^NA
i , j~S!&~E,M !

3V~E1 iDE,M1 j DM !. ~9!

The following remarks are in order.
~i! Microreversibility as explained in Appendix A is

sufficient condition for the equality in Eq.~8!. Apart from
this condition, which is implemented easily, the setA of
operators can be chosen arbitrarily.

~ii ! In the density of states, a multiplicative constant
physically irrelevant. For that reason,V can be chosen arbi

FIG. 1. ~a! Visualization of the transition observablesNA
i , j for

the casei P$21,0,1% and j P$21,1%. Given aparticular microstate
S with interaction energyE(S)5E and magnetizationM (S)5M ,

NA
i , j (S) gives the number of possibilities to reach any stateS̃ with

energy E(S̃)5E(S)1 iDE and magnetization M (S̃)5M (S)
1 j DM by applying the operatorsAPA to the microstateS. The
microcanonical average of the transition observableNA

i , j is propor-
tional to thetotal number of possibilities for the event that, give
anystateSwith energyE(S)5E and magnetizationM (S)5M , any

other stateS̃ with energy E(S̃)5E(S)1 iDE and magnetization

M (S̃)5M (S)1 j DM is reached under the action of the operato
APA. ~b! shows the ‘‘transition paths’’ corresponding to the va
ous microcanonical expectation values contributing to the dif
ences of the logarithm of the density of statesDM(ln V) at the point
(E,M ), as introduced in Sec. III.
-

trarily for one particular value of (E,M ). Then, the density
of states of the remaining (E,M ) values can be calculate
from Eq. ~9!.

~iii !The efficiency of the BHM depends crucially on th
particular choice ofA.

~iv! The BHM is neither restricted to the investigation
Ising systems~with bare next-neighbor interaction@4#! nor to
the investigation of discrete systems@5#. Example: consider a
discrete spin system with a Hamiltonian consisting of tw
interaction terms,

H~S!5E1~S!1E2~S!, ~10!

which depends on certain coupling constants, say,J1 andJ2
~e.g., ferromagnetic coupling to next neighbors and antif
romagnetic coupling to next-nearest neighbors!. The knowl-
edge of the density of states as a function ofE1 andE2,

V~E1 ,E2!ª (
SPGLd

dE1(S),E1
dE2(S),E2

, ~11!

enables the determination of the thermostatic properties
the system forall possible values of the ratio of the couplin
constants by applying certain ‘‘skew-summing’’ techniqu
@6#. In complete analogy to the above, a set of transit
observables can be defined which facilitates the determ
tion of the thus defined density of statesV(E1 ,E2).

~v! For a matrixT defined as

@T# (E8,M8),(E,M )ª
1

uAu
K NA

E82E
DE ,

M82M
DM ~S!L ~E,M !,

~12!

whereuAu is the cardinality of the setA, it is easy to show
the following: ~a! T is a stochastic matrix, i.e.,

@T# (E8,M8),(E,M )>0 ; ~E8,M 8!,~E,M ! ~13!

and

(
(E8,M8)

@T# (E8,M8),(E,M )51; ~14!

~b! the density of states is the stationary state ofT:

(
(E,M )

@T# (E8,M8),(E,M )V~E,M !5V~E8,M 8!. ~15!

Furthermore, ifT is regular, i.e., if for all (E8,M 8) and
(E,M )

'nPN:@Tm# (E8,M8),(E,M ).0, ; m>n, ~16!

the stationary state ofT is unique. Nevertheless, even if th
condition is not fulfilled, the density of states can be co
puted piecewise on certain subsets of the total set of poss
energy and magnetization values of the system. The t
produced ‘‘fragments’’ of the density of states are then co
nected to each other via~a priori unknown! multiplicative
constants. Note that the stochastic matrixT defined above is
closely related to the so-called transition matrix Monte Ca
method@7#.

~vi! Note that the naming ‘‘broad histogram method’’
extremely misleading since the heart of the BHM, the ge

-
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eration of simulation averages of the transition observa
has nothing to do with broad histograms, i.e., the shape
histogram generated during the course of a Monte C
simulation.

E. The reduced transition observable

The results of Sec. II D can be simplified to those p
sented in@3#, where no information on the magnetization
the system is regarded. Formally, this can be achieved
summation over the magnetizationM ~or the indexj, respec-
tively! in some of the expressions of the preceding sect
Then, however, only a determination of thereduced density
of states

Ṽ~E!ª(
M

V~E,M ! ~17!

is feasible, which does not entail the entire thermodyna
information of the system@in the sense thatV(E,M ) enables
the calculation of thermal and magnetic equations of stat

various ensembles, whereasṼ(E) just allows for the estima-
tion of the thermal equation of state#.

The reduced microcanonical averageof a system observ
able f (S) over the energy shellE(S)5E is defined as

^ f ~S!&~E!ª lim
N→`

^ f ~S!dE(S),E&sim,w~$S%N!

(
M

Hw~E,M ;$S%N!

5
1

Ṽ~E!
(

SPGLd

dE(S),E f ~S!. ~18!

We further define thereduced transition observable

ÑA
i ~S!ª(

j PZ
NA

i , j~S!

5 (
S̃PGLd

dE(S̃),E(S)1 iDE (
APA

dAS,S̃ , i PZ. ~19!

Then, for any set of operatorsA which satisfies

0Þ (
SPGLd

dE(S),EÑA
i ~S!5 (

SPGLd

dE(S),E1 iDEÑA
2 i~S!,

~20!

the reduced density of states~17! can be calculated from th
reduced microcanonical average~18! of the reduced transi
tion observable~19!:
e,
a

lo

-

a

n.

ic

in

Ṽ~E1 iDE!5
^ÑA

i ~S!&~E!

^ÑA
2 i~S!&~E1 iDE!

Ṽ~E!. ~21!

Again, microreversibility~see Appendix A! is sufficient to
ensure the equality in Eq.~20!.

III. COMPARISON OF THE EFFICIENCY OF THE
STANDARD HISTOGRAM METHOD AND THE BROAD

HISTOGRAM METHOD

To demonstrate the advantages of the BHM, numer
results obtained from either the standard histogram met
or the BHM are compared. The philosophy of the compa
son is to use some simulation technique to generateone
sample of microstates which is then evaluated according
both methods.

The simulations were performed for ad52, L532 and a
d53, L510 Ising system. For the sake of completeness,
details of the computer simulations are given in Appendix
The setA was chosen to consist ofLd operators, which are
labeled by the subscripti and are defined by their action on
particular microstateS,

Ai :S5s1 ,s2 , . . . ,s i , . . . ,sLd

°S̃5s1 ,s2 , . . . ,2s i , . . . ,sLd, ~22!

i.e., the operatorAi flips the i th spin of the Ising lattice.
Obviously, sinceAiAiS5S, the thus defined set of operato
meets the condition~30! and is therefore microreversible
Note that the determination of the simulation average of
transition observable by use of this particular set of opera
can be done very fast. In fact, the time needed for apply
the Ld operators of the setA to a particular microstate is
much shorter than the time needed to perform a lat
sweep. Simulation averages ofNA

i , j were recorded only for
values ofi P$21,0,1% and j P$21,1%.

In order to emphasize the difference between the t
methods, we compare ‘‘discrete derivatives’’~i.e., ratios of
differences! of the logarithm of the density of states as fo
lows.

~i! For the case of thed52 Ising model,

DE~ ln Ṽ~E!!ª
1

2DE
@ ln Ṽ~E1DE!2 ln Ṽ~E2DE!# ~23!

5
1

2DE
lnF ^ÑA

1 ~S!&~E2DE!^ÑA
1 ~S!&~E!

^ÑA
21~S!&~E1DE!^ÑA

21~S!&~E!
G .

~24!

~ii ! For the case of thed53 Ising model,
DM~ ln V~E,M !!ª
1

2DM
@ ln V~E,M1DM !2 ln V~E,M2DM !# ~25!

5
1

2DM
lnF ^NA

1,1~S!&~E,M2DM !^NA
21,1~S!&~E1DE,M !

^NA
1,21~S!&~E,M1DM !^NA

21,21~S!&~E1DE,M !
G ~26!
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5
1

2DM
lnF ^NA

21,1~S!&~E,M2DM !^NA
1,1~S!&~E2DE,M !

^NA
21,21~S!&~E,M1DM !^NA

1,21~S!&~E2DE,M !
G ~27!

5
1

2DM
lnF ^NA

0,1~S!&~E,M2DM !^NA
0,1~S!&~E,M !

^NA
0,21~S!&~E,M1DM !^NA

0,21~S!&~E,M !
G . ~28!
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Note that both ‘‘discrete derivatives’’~23! and ~25! are
closely related to microcanonical equations of state~see@8#
and Appendix B for details!.

A. Example 1: The dÄ2, LÄ32 Ising lattice

In Fig. 2, the differences of the logarithm of the reduc
density of states as emerging from the BHM~24! and the
standard histogram method~4! are shown together with th
exact result@9#. By use of a sample of 83105 microstates,
the BHM yields a result which, on the scale of the figure, c
hardly be distinguished from the exact result, whereas
data obtained from the standard histogram method sc
strongly around the latter.

In Fig. 3, the results of the BHM~using one sample of
n583105 microstates! are compared to the results of th
standard histogram method for several sample lengthsn,
5n, 10n, and 15n) by plotting the deviation of the simulatio
data from the exact result. Even if the simulation time
chosen 15 times longer in the standard histogram meth
the BHM still yields more accurate results.

Calculating the mean-square deviation of the simulat
data from the exact result as a function of simulation ti
~Fig. 4!, we notice that the accuracy of both methods is i
proved according to a power law@the corresponding expo
nents seem to be the same~approximately21) in both meth-

FIG. 2. Intensive energy as a function of@DE(ln Ṽ)#21 of a 322

square Ising system. The solid line is the exact result, the da
line corresponds to the BHM, and the points to the standard hi
gram method. An identical sample of 83105 microstates was use
to perform both evaluations. The energy is plotted aga

@DE(ln Ṽ)#21 because of its correspondence to a thermal equa
of stateE(T) ~see Appendix B!. The strong fluctuations in both th
high-energy and the low-energy region of the figure are due to p
statistics in the tails of the histograms. In the central region,
difference between the dashed and the full line is smaller than
line thickness.
n
e

ter

d,

n
e
-

ods#. At any given time, the BHM beats the standa
histogram method in accuracy by a factor of roughly 40. T
comparison of the data was done within a certain ‘‘ene
window’’ which was chosen around the center of the his
gram, i.e., the tails of the histogram have been discard
Since the same sample is used in both evaluation techniq
the result of the comparison does not depend on the widt
the ‘‘energy window’’ chosen for the evaluation of thex2

deviations.

B. Example 2: ThedÄ3, LÄ10 Ising lattice

From the Monte Carlo samples, we computed the diff
ences of the logarithm of the density of states in the direct
of the magnetization according to Eq.~4! in the case of the
standard histogram method and according to Eqs.~26!–~28!
in the case of the BHM@in fact, we computed the mean valu
of the three possibilities ~26!–~28! of determining
DM(ln V)].

In Figs. 5~a! and 5~b!, DM(ln V) is shown forE/Ld5
20.924. In Fig. 5~a!, a sample of length 13107 microstates
is used for the evaluation ofDM(ln V) according to both
methods, whereas in Fig. 5~b! the standard histogram metho
with a sample length of 53107 microstates is compared t
the BHM with a sample length 13107 again. For a better
visualization of the difference between the two me

ed
o-

t

n

or
e
e

FIG. 3. In order to point out the differences between the BH
and the standard histogram method and in order to show tha
used estimators are indeed unbiased, the data emerging from
Monte Carlo simulation of a 322 square Ising system are subtract
from the exact result@9#. The transition observable data~standard
histogram data! are represented by solid lines~points!.
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ods, an odd polynomial@ f fit(M )5aM1bM31cM5# was
fitted to the BHM data. Subtraction of the data of Figs. 5~a!
and 5~b! from this polynomial yields the plots shown in Fig
5~c! and 5~d!. In the figures, the BHM~standard histogram!
data are represented by the solid lines~points!. The plots of
the differences show the consistency of both methods
both data sets scatter ‘‘randomly’’ around the fit functio
The data emerging from the BHM, however, are much m
accurate than the data emerging from the standard histog
method even if much longer samples are used in the lat

For a quantitative comparison between the two metho
the mean-square deviations of the simulation results w
respect to a fit to the best data obtained by the BHM
shown as a function of the simulation time in Fig. 6.@We
have performed a weightedx2 fit of an odd polynomial

FIG. 4. In order to judge the quality of the two methods, thex2

deviation of the simulation results from theexactresult is shown for
a 322 square Ising system as a function of the simulation time~in
units of 83105 lattice sweeps!.

FIG. 5. In~a! and~b!, differences of the logarithm of the densit
of states DM(ln V) for a 103 Ising system are shown fo
E/Ld50.924. In~a!, a sample of length 13107 microstates is used
for the evaluation ofDM(ln V) according to both methods, wherea
in ~b!, the standard histogram method with a sample length o
3107 microstates is compared to the BHM with, again, sam
length 13107. For a better demonstration of the difference betwe
the two methods, the same data are subtracted from a fit functio
~c! and ~d! ~see text for the details of the fit!. In all figures, the
BHM data ~standard histogram data! are represented by the soli
lines ~points!.
as
.
e
m

r.
s,
h
e

f fit(M )5aM1bM31cM5 to the data obtained from a 5
3107 sample by probing the transition observable. The
rors needed for the weighted fit have been produced b
jack-knife blocking procedure using 25 data sets, each be
of sample length 23106]. The accuracy is improved accord
ing to a power law with an exponent of approximately21 in
both methods. Note, however, that at any given time
BHM yields results which are more accurate than the res
emerging from the standard histogram method by a facto
approximately 250 in the sense of the mean-square devia
In order to produce results of similar quality, the simulati
time in the standard histogram method has to be appr
mately 250 times longer than in the BHM.

C. General remarks on Sec. III

~i! The two examples discussed in the preceding sect
show that a simulation can be accelerated dramatically
probing the transition observable. It is not the algorith
which speeds up the simulation, but it is the particular cho
of the observable which is measured during the simulati
The reason for this striking difference is indeed very simp
while every microstate, which is decided to be part of t
sample, just yields one entry in a list in the standard his
gram method, it might yield many transitions to neighbori
states~neighboring with respect to the interaction ener
and/or magnetization!. Hence, the statistics of the BHM ca
be expected to be much better than the statistics of the s
dard histogram method. In fact, since the Ising systems un
consideration just allow for five~seven! different interaction
energy changes@DE5(612), 68, 64, 0 and only two
magnetization changes (DM562) under single spin-flip
operations ind52 ~3!, the setA of operators chosen abov
can be expected to shorten the computational effort b
remarkable factor, roughly proportional to the square roo
the inverse volumeL2d/2 of the system.

~ii ! The change of the interaction energy under a sin
spin-flip operation depends on the configuration of the sp
in the very neighborhood of the particular spin to be flippe
The typical configurations of neighboring spins vary with t
interaction energy of the whole system. For that reason,
factor of proportionality of the efficiency gain in the sense
the x2 comparison introduced above can be expected to

5
e
n
in

FIG. 6. In order to compare the quality of the results emerg
from the standard histogram method to those emerging from
BHM for a 103 Ising system, the mean-square deviations of
simulation results with respect to a fit to the best data obtained
the BHM are shown as a function of the simulation time~in units of
23106 lattice sweeps!.
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pend on the mean interaction energy of the histogram, wh
itself depends on the simulation parameters~i.e., the station-
ary distribution!.

~iii ! The particular way of generating the sample of m
crostates is not important in the context of a comparison
the BHM and the standard histogram method.

IV. CONCLUSION

A Monte Carlo simulation consists of two steps. The fi
step is the generation of a sample of microstates. The se
step is the investigation of these microstates. Convention
if the aim is to speed up the simulation, the first step
modified while the second remains unchanged. In a qua
tative investigation, we have shown that a more extens
exploitation of the microstates of the sample, i.e., tak
simulation averages of the transition observable instead
just cumulating a standard histogram, can effectively sp
up the simulation by a tremendous amount.

In an extremely straightforward implementation of t
BHM, a speed up is achieved which can be expected to
proportional to the square root of the volume of the syst
under consideration. Such a speed up seems unattainab
an improvement of the algorithm of the simulation, i.e.,
modifying the first step of the simulation.

Even though the transition observable seems to be b
for discrete spin systems, Mun˜oz and Herrmann@5# have
already shown that the method can be transferred to con
ous spin systems. An extension of this method to ‘‘nonsp
systems such as polymers might be a topic for future inv
tigations.
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APPENDIX A: MICROREVERSIBILITY

Let A be a set of operators acting on configuration sp
GLd,

A#$A:ASPGLd ; SPGLd%, ~29!

such that for allAPA, there exists a unique inverse opera
B5A21PA, i.e.,

;APA '! BPA: BAS5S. ~30!

Then,A is said to showmicroreversibility. From the micro-
reversibility ofA, it follows immediately that the number o
operatorsAPA which transformS into S̃ equals the numbe
of operatorsAPA which transformS̃ back intoS:

(
APA

dAS,S̃5 (
APA

dS,AS̃. ~31!
h

f

t
nd
y,
s
ti-
e

g
of
d

e

by

ilt

u-
’’
s-

r

e

r

Using the definition of the transition observable~7!, this can
be shown to be equivalent to

(
SPGLd

dE(S),EdM (S),MNA
i , j~S!

5 (
SPGLd

dE(S),E1 iDEdM (S),M1 j DMNA
2 i ,2 j~S!.

~32!

That is, the number of operations which transform m
crostates with interaction energyE and magnetizationM into
microstates withE1 iDE andM1 j DM by use of operators
APA is identical to the number of operations which tran
form ‘‘backwards,’’ i.e., from states withE1 iDE and M
1 j DM to those with interaction energyE and magnetization
M.

APPENDIX B: MICROCANONICAL EQUATIONS OF
STATE

As mentioned in Sec. III, the differences of the logarith
of the density of statesDM(ln V) are related to the microca
nonical magnetic equation of state. Indeed, Eq.~25! is the
microcanonical magnetic equation of state in a discrete
tation ~appropriate for the description of finite Ising sy
tems!, which converges towards the magnetic equation
state of the infinite system,

2bh~«,m!5
]

]m
lim

L→`

L2dln V~Ld«,Ldm,L21!, ~33!

in the thermodynamic limitL→`. Here, b is the inverse
temperature,h is an external magnetic field, and«ªL2dE
and mªL2dM are the intensive counterparts ofE and M,
respectively. The difference of the logarithm of the reduc
density of states~23! converges towardsb(«,bh)uh50 of the
infinite system for zero external field and can serve to co
pute zero-field properties of the system.@The inverse tem-
peratureb(«,bh) is the derivative with respect to« of the
Legendre transform of limL→`L2dln V(Ld«,Ldm,L21) with
respect tom. Note that («,b) and (m,bh) are the pairs of
conjugate variables in the entropy formalism#.

Note that it is unnecessary and a rather roundabout wa
convert the thus obtained data into the commonly used
nonical quantities. For details on the investigation of pha
transitions in a microcanonical approach and a microcan
cal finite-size scaling theory, see@8#.

APPENDIX C: DETAILS OF THE MONTE CARLO
SIMULATION

1. Simulation of the dÄ2, LÄ32 Ising lattice

A Monte Carlo simulation of a 322 Ising system with
periodic boundary conditions was performed. The station
distribution of the underlying Markov process was chosen
be proportional to the Boltzmann weightw„E(S),M (S)…
}exp$2H(S)/T% with simulation parametersh50 and T
52.269~see Sec. II A for the definition of the Ising Hami
tonian!. We have implemented a sequential lattice upd
with a Metropolis-type @10# transition rate T(S→S8)
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5min$1,ŵ(S8)/ŵ(S)% and have sampled everyLdth con-
figuration only. After ‘‘equilibration’’ (6.43105 lattice
sweeps have been discarded!, several successive sample
each of length 83105, were taken.

2. Simulation of the dÄ3, LÄ10 Ising lattice

A Monte Carlo simulation of a 103-Ising system with pe-
riodic boundary conditions was performed. The station
od

ra

in

te
B.
,

y

distribution was chosen to bew„E(S),M (S)…}$@E0
2E(S)#/N0%

(N022)/2, i.e., independent ofM (S) again. The
simulation parameters were chosen to beE051586 andN0
51000 ~for a detailed discussion and interpretation of th
stationary distribution, see@11#!. The way of updating the
lattice configurations is the same as for the simulation of
322-Ising system~see Appendix C!. After ‘‘equilibration’’
(23106 lattice sweeps have been discarded!, several succes
sive samples, each of length 23106, were taken.
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