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Compared to standard histogram techniques, the broad histogram method allows us to increase the efficiency
of Monte Carlo simulations by a tremendous amount. This gain of efficiency is achieved by measuring
simulation averages of particular system observalddferent from those used in standard histogram tech-
niques, while the algorithm of the simulation can be left unchanged. In this paper, the broad histogram method
is reformulated in a more mathematical and precise way. Furthermore, the method is extended to estimate the
density of states as a function of more than one parameter. A quantitative investigation of the gain of efficiency
of Monte Carlo simulations is performed. For the broad histogram method, we find a gain of efficiency which
amounts to orders of magnitude in comparison to the standard histogram method.

PACS numbds): 02.70.Lq, 05.10-a

I. INTRODUCTION is exploited in a much more sophisticated way. For the par-
ticular realization of the method introduced in Sec. Ill, this
In performing a Monte Carlo simulation, one or severalmeans that in an extended histogram, which is defined as the
observables are chosen, for which a simulation average iwimulation average of the so-called transition observable to
recorded. A common choice for such an observable givebe introduced below, the number of possible transitions is
rise to a standard histogram as introduced by Salsbued.  recorded from particular microstatés the Monte Carlo
[1] and popularized by Swendsen and Ferrenj@ig The  sample with energyE and magnetizatioM to “neighbor-
histogram allows for the estimation of the density of stategng” microstates(not necessarily in the Monte Carlo sample
Q, from which a variety of physically interesting system with energyE+ AE and magnetizatioM =AM, which can
properties can be computed. The broad histogram methdge reached from the particular microstates of the sample by
(BHM) as recently suggested by Oliveigaal. [3] likewise  applying single spin-flip operations. Again, from the simula-
enables an estimation of the density of states but leads totfon averages of the transition observables, the density of
considerable reduction of the computing time. This reductiorstates can be computésee Sec. Il D
is achieved by measuring simulation averages of particular The advantage of this method is that every microstate of
(system observables, different from those which yield athe Monte Carlo sample is investigated much more exten-
standard histogram, while the algorithm of the simulationsively than by the standard histogram technique. Therefore,
can be left unchanged. given a certain sample of microstates, the density of states
From the method presented[i8], the density of state can be calculated more accurately from simulation averages
can be computed as a function of one variable, the enérgy of the transition observable than by standard methods. Addi-
In general, this does not enable the determination of the ertionally, as it is the selection of microstates using pseudoran-
tire set of equations of state describing the behavior of thelom numbers which is costly in computer time, the increase
system. The entire set can be obtained from the density ah computer time from such a more extensive exploration of
states as a function of more than one parameter. To this vejie chosen microstates is absolutely negligibldeast in the
aim, an extension of the BHM is required. For the case of thease of the particular realization of the method introduced
standard Ising model, such an extension is shown to yield thibelow). However, the effect on the data quality is significant
density of state$)(E,M) as a function of the energg and  and can amount to orders of magnitude. In the case of the
the magnetizatioM. examples studied in this paper, we find an efficiency gain of
If the standard histogram method is applied to magneticoughly two orders of magnitude. This efficiency gain can be
systems, the number of microstates with enefggnd mag-  expected to grow proportional 1672, the square root of the
netizationM is counted during the course of simulation, i.e., volume of the system. It is this enormous gain of efficiency
every microstate yieldsneentry in an energy-magnetization which should motivate the reader to focus on the underlying
histogram. From this histogram, the density of stateformalism, which is indeed simple to implement in a simu-
Q(E,M) can be computetsee Sec. Il © lation, but is somewhat heavy to formalize.
In the BHM, each microstate of the Monte Carlo sample In this paper we show that it is straightforward to extend
BHM to more than one parameter. Quantitative investiga-
tions of the efficiency of this method in comparison to stan-

*Corresponding author. dard histogram methods are presented. Sections Il Aand || B
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70569 Stuttgart, Germany. out this paper and with some aspects of the Monte Carlo
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procedure. In Sec. Il C, the standard histogram technique is N

reviewed in the context of the calculation of the density of (f(S))gmw({S}y) ;:i 2 f(S) — 2 f(SHW(S).
states. In the context of the BHM, the transition observable is ’ NSE{S}N Sel'd
introduced in Sec. I D. In Sec. Il E, it is shown that this 2

observable includes the one presented3h as a special . . i
case. The rest of the pap@ec. Il)) is devoted to a compari- O_f course, the simulation average depends on the statlon_ary
son of the efficiency of computer simulations using the BHMdistribution and, unless the length of the Markov chain
in contrast to a standard histogram technique. This is donk&aches infinity, on the particular samgi} .

for the examples of @ and 3d-Ising systems, where we find

a gain of efficiency of approximately 40 in the %&ing C. The standard histogram method

system and of approximately 250 in the*18ing system. The histogramH,,(E,M;{S},), which is proportional to

the number of microstates of the sample with interaction

energyE and magnetizatiom, is given by the simulation
Il. CALCULATING THE DENSITY OF STATES average of the observabli:s) £ Suegm

BY MONTE CARLO SIMULATION

A. Conventions and notation Hu(E,M:{S}1) = (Fe(s).£0m(9) M) simw({Sn)

In this paper, we use the language of discrete Ising sys- _ i 2 S S
tems with nearest-neighbor interactions on hypercubic lat- N s, FOETMEM
tices of linear sizel in d spatial dimensions with Hamil-
tonian

N—ow

H(S)==—J<Z> oio;—hY, o=:E(S)—hM(S), SeT|q, - sng Fe(9).0m9.mW(E(S)M(9)
i, i

oY) =Q(E,M)W(E,M), ©)

o _ _ where 5 denotes Kronecker’s delta symbol. Since the under-
whereh denotes an external magnetic fiel(S) is the in-  |ying stationary distributiorw is known (at least apart from

teraction energy ani¥1(S) the magnetization of the particu- an jrrelevant factor the density of states is obtained as
lar microstate S=o04,05, ...,0i,...,0.d (=particular

configuration of the spins;, i=1,2, ... L% on theLY lat-
tice) with o;e{—1,+1}. The configuration space of the QEM)= D S edmsm
. . N . Seld
Ising system is denoted by, ¢, and(i,j) indicates a sum-
mation over all pairs of nearest neighbors. The discreteness = lim H,(E,M;{S} »/W(E,M), (4)
of the Ising systems gives rise toinimal energy and mag- N

netization spacings, denoted By and AM, respectively.
Summations over the interaction enerfy(magnetization or — more realistically for a computer simulation — at least
M) cover all energy(magnetizatioh values accessible for an estimator fo) is obtained by omitting the limiting pro-
the system. In general, in order to simplify the notation, syscedureN— .
tem size dependences are not stated explicitly. In what fol-

lows, we set the Ising coupling constal¥=1 and Boltz-

D. The broad histogram method
mann’s constankg=1.

In this section, it is shown that the density of states can be
obtained from simulation averages of certain so-called tran-
B. Some remarks on Monte Carlo simulations SItIOﬂ Observab|eS deflned beIOW, Wthh have the advanta'

geous feature that they enable the estimation of the density

For a Monte Carlo simulation, a Markov process is set Uyt states in a much more efficient way than the standard
on configuration spac€ ¢ with a certain problem-adapted histogram method does.

stationary distributiorw(S), which is assumed to depend  As a preliminary step, let us define tmeicrocanonical
only on the interaction enerdy and the magnetizatioll of  averageof a system observablS):

the microstates, i.e., w(S)=w(E(S),M(9)). [lt is straight-

forward to extend the formalism introduced in the following (f(S))(E,M):= lim (F(S) Se(9),£0m(9).M)simm({ S} 1)
sections to the case of a more general stationary distribution ' Nesoo H(E,M;{S}\)

which, of course, may depend on system observables other

than the interaction enerdy and the magnetizatiom. The 1 E s s tsS). (5
restricting assumptiom(S) =w(E(S),M(S)) is made only Q(E,M) &, O EMEM (S).

for the sake of notational simplicityFrom the Markov chain

{S}y of length V/ (which, at least in the limit of infinitely et 4 be a set of operators acting on configuration space
long samples, is distributed according\h), the simulation  T' 4,

averageof an arbitrary functiorf: I' a«— R on configuration

space can be obtained: AC{A:ASel'a« V Sel'd}. (6)
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(a) (b) trarily for one particular value of&,M). Then, the density
of states of the remainingg(M) values can be calculated
M+ AM + M+AM + from Eq. (9).

M+ M+ -3 (iii)The efficiency of the BHM depends crucially on the
M-aMm L MoAM L particular choice ofA.

(iv) The BHM is neither restricted to the investigation of

R — Ising systemswith bare next-neighbor interacti¢d]) nor to
E-AE E E+AE E—-AE E E+AE the investigation of discrete systefit§. Example: consider a
discrete spin system with a Hamiltonian consisting of two
interaction terms,

FIG. 1. (a) Visualization of the transition observableté;;lj for
the case e {—1,0,1} andj e {—1,1}. Given aparticular microstate
S with interaction energye(S)=E and magnetizatio (82: M, H(S)=E(S)+Ex(S), (10)
N'{/(S) gives the number of possibilities to reach any stteith
energy E(S)=E(S)+iAE and magnetization M(S)=M(S) which depends on certain coupling constants, dayndJ,
+jAM by applying the operatoré e A to the microstates The  (€.9., ferromagnetic coupling to next neighbors and antifer-
microcanonical average of the transition observalii¢ is propor- ~ romagnetic coupling to next-nearest neighbot$e knowl-
tional to thetotal number of possibilities for the event that, given edge of the density of states as a functiorEgfand E,,
anystateSwith energyE(S) = E and magnetizatioM (S) =M, any
othgr stateS with energy E(S)=E(S)+iAE and magnetization Q(E;,Ey) = E 5El(S),E15E2(S),E2: (11)
M(S)=M(S)+jAM is reached under the action of the operators Seld

Ae A. (b) shows the “transition paths” corresponding to the vari- o . .
ous microcanonical expectation values contributing to the differ-enables the determination of the thermostatic properties of

ences of the logarithm of the density of statgg(In (1) at the point the system foall pO_SS|bIe val_uef, of the ratio _Of tPe Coupllng
(E,M), as introduced in Sec. IlI. constants by applying certain “skew-summing” techniques

[6]. In complete analogy to the above, a set of transition
observables can be defined which facilitates the determina-
tion of the thus defined density of stat@gE, ,E,).

(v) For a matrixT defined as

Thetransition observable ﬁ{(S) is defined as the number of
operatorsA e A acting on the particular microstag&which

result in microstate$ with interaction energ\E(S) =E(S)

+iAE and magnetizatioM (S) =M (S)+jAM: 1/ E-EM-M
[Tl em =77y N SETAMT(S) [ (EM),
Nij\j(s) ==~2 OE(3),E(S) +IAEOM(D),M(9) +]AM (12
Selu where|A| is the cardinality of the se#, it is easy to show
o the following: (a) T is a stochastic matrix, i.e.,
X 2 Onss, ek (7)

[Tle my,em=0V (E'\M"),(E,M) (13

(See Fig. 1 for an illustration of the thus defined observ-gnd
ables) Then, for any setd of operators which satisfies

. Z, [Tl mny,Eem=1; (14
075521_‘ , 5E(S),E5M(S),MNA](S) (E"\M")
: (b) the density of states is the stationary statdl of

= > Og(9) E+iAE5M(S)M+jAMN;1i'7j(S)7 8
s&T (%) [Tle my.emQEM=QE M), (15

the density of state§)(E,M) can be calculated from the o ) ) L
microcanonical averagés) of the transition observable¢g) ~ Furthermore, ifT is regular, i.e., if for all €',M") and
to yield (E,M)

(N, "HS)NE+IAE,M+[AM) IneN[T e m),em>0 V m=n, (16

Q(E,M)= <NQJ(S)>(E,M) the stationary state of is unique. Nevertheless, even if this
condition is not fulfilled, the density of states can be com-
XQ(E+IAE,M+]AM). (9)  puted piecewise on certain subsets of the total set of possible
energy and magnetization values of the system. The thus
The following remarks are in order. produced “fragments” of the density of states are then con-

(i) Microreversibility as explained in Appendix A is a nected to each other vi@ priori unknown multiplicative
sufficient condition for the equality in Ed8). Apart from  constants. Note that the stochastic mafridefined above is
this condition, which is implemented easily, the sétof  closely related to the so-called transition matrix Monte Carlo
operators can be chosen arbitrarily. method[7].

(i) In the density of states, a multiplicative constant is (vi) Note that the naming “broad histogram method” is
physically irrelevant. For that reasof}, can be chosen arbi- extremely misleading since the heart of the BHM, the gen-
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eration of simulation averages of the transition observable, 3 <NiA(S))(E) B

has nothing to do with broad histograms, i.e., the shape of a QE+IAE)=—=— Q(E). (22)
histogram generated during the course of a Monte Carlo (N4'(S))(E+iAE)

simulation.

Again, microreversibility(see Appendix A is sufficient to

. ensure the equality in E@20).
E. The reduced transition observable

The results of Sec. Il D can be simplified to those pre-  Ill. COMPARISON OF THE EFFICIENCY OF THE
sented in 3], where no information on the magnetization of STANDARD HISTOGRAM METHOD AND THE BROAD
the system is regarded. Formally, this can be achieved by a HISTOGRAM METHOD

summa}tlon over the magnetlzgtlm(or the mdeXJ,'respec—' To demonstrate the advantages of the BHM, numerical
tively) in some of the expressions of the preceding section,

Then. however. onlv a determination of treduced densit results obtained from either the standard histogram method
of sta’tes - only Y or the BHM are compared. The philosophy of the compari-

son is to use some simulation technique to genecaie
- sample of microstates which is then evaluated according to
QUE):=2, Q(E,M) (17 both methods.
M The simulations were performed forde=2, L=32 and a

=3, L=10 Ising system. For the sake of completeness, the

is feasible, which does not entail the entire thermodynami d : . . . . ;
: ! . Yetails of the computer simulations are given in Appendix C.
information of the systerfin the sense tha (E,M) enables .The setA was chosen to consist & operators, which are

the calculation of thermal and magnetic equations of state i beled by the subscripand are defined by their action on a

various ensembles, Whereé$E) just allows for the estima-  particular microstaté,
tion of the thermal equation of stdte
Thereduced microcanonical average# a system observ- AiiS=01,02,...,00,...,00d

able f(S) over the energy shelE(S)=E is defined as ~
—>S=01,02, ...,— 0, ...,0.d, (22

(f(S))(E):= lim (F(S) 99 £)simw({Str) i.e., the operator; flips the ith spin of the Ising lattice.
Noe U (E M;{S} ) Obviously, sinceA;A;S=S, the thus defined set of operators
g W SIN meets the conditiorf30) and is therefore microreversible.
Note that the determination of the simulation average of the
1 transition observable by use of this particular set of operators
:ﬁ Sng Se(9).e f(S). (18 can be done very fast. In fact, the time needed for applying
the LY operators of the setl to a particular microstate is
much shorter than the time needed to perform a lattice
sweep. Simulation averages f; were recorded only for
. - values ofi e{—1,0,1} andj e{—1,1}.
N'A(S):=Z N'/(S) In order to emphasize the difference between the two
IeZ methods, we compare “discrete derivative@'e., ratios of
difference$ of the logarithm of the density of states as fol-
= 2 Se@e®+ine D Oass i€Z. (19  lows.
Sel'd AeA (i) For the case of thd=2 Ising model,

We further define theeduced transition observable

Then, for any set of operatord which satisfies ~ 1 ~ ~
Ag(INQE)):=5=[INQUE+AE)-INnQ(E-AE)] (23

2AE
Sers.eN(S)= N - .
0¢S§Ld £(9),eNA(S) %a Se(s),E+iaeNL (), 1 RO)E B FE)E)
20 20E 7| (N, A9 E+AENNXS)E)|
the reduced density of staté€k?) can be calculated from the (24)
reduced microcanonical avera¢e8) of the reduced transi-
tion observabl€19): (ii) For the case of thd=3 Ising model,
AM(InQ(E,M))::ZAM [INQE,M+AM)—InQ(E,M—AM)] (25
1 | (NGAS)HEM—AMYN () (E+AEM)

T28M | (N H(S)(E,M+ AM)(N - H(S) (E+ AE, M) 2
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1 [ (NZMY(9))E.M—AM)NYY(S)(E—AE,M)
= Inf——1-3 1-1 (27)
2AM T UNETHS)NE M+ AMY(NYTH(S))(E-AE,M)
1 [ (NGO (EM —AM)(NG(S)(E.M) 8
T2AM | (NS X(9))(E, M+ AMI(NG (S))(EM) |

Note that both “discrete derivatives'(23) and (25 are ods. At any given time, the BHM beats the standard

closely related to microcanonical equations of s{ate[8] histogram method in accuracy by a factor of roughly 40. The

and Appendix B for detai)s comparison of the data was done within a certain “energy

window” which was chosen around the center of the histo-

gram, i.e., the tails of the histogram have been discarded.

Since the same sample is used in both evaluation techniques,
In Fig. 2, the differences of the logarithm of the reducedthe result of the comparison does not depend on the width of

density of states as emerging from the BHRH) and the the “energy window” chosen for the evaluation of the&

standard histogram methdd) are shown together with the deviations.

exact resul{9]. By use of a sample of :810° microstates,

the BHM yields a result which, on the scale of the figure, can B. Example 2: Thed=3, L =10 Ising lattice

hardly be distinguished from the exact result, whereas the

data obtained from the standard histogram method scatter From the Mont_e Carlo samples, we compu_ted the_ dlff_er-
strongly around the latter ences of the logarithm of the density of states in the direction

In Fig. 3, the results of the BHMusing one sample of of the magnetization according to E@) in the case of the

n=8x10° microstates are compared to the results of the _standard histogram method and according to E26~(28)

. the case of the BHNjin fact, we computed the mean value
standard histogram method for several sample lengths ( n S -
5n, 10n, and 1%) by plotting the deviation of the simulation Zf (Itrr:?l) three  possibilities (26~(28) of determining
data from the exact result. Even if the simulation time is MI Fi ] Ha) and §b), A,(InQ) is sh for /L 9=
chosen 15 times longer in the standard histogram method, N FIgs. aa) an  Au(In) s s OW? or B
the BHM still yields more accurate results. —0.924. In Fig. %a), a sample of length %X 10" microstates

Calculating the mean-square deviation of the simulatior® used for the evaluation o (In() according to both

data from the exact result as a function of simulation timemethOdS' whereas in Fig(15 the standard histogram method

. 7 . .
(Fig. 4), we notice that the accuracy of both methods is im-Wlth a sample length of 510" microstates is compared to

proved according to a power lajthe corresponding expo- the BHM_W'th a sampl_e length 210" again. For a better
nents seem to be the sat@proximately— 1) in both meth- visualization of the difference between the two meth-

A. Example 1: Thed=2, L =232 Ising lattice

8 x 10° sweeps — 8 x 10° sweeps —
-1.0 — 8 x 10° sweeps - —~ 5 x 8 x 10° sweeps -+
£ o004 N 5 oonef
e o]
E o . E -
12 L 0.000 . L0000
o el = - ol L
2 E E
g -14 = -0.004 - - = 0004 | o
< 18 1.4 -1.0 < 1.8 1.4 -1.0
E/32 E/322
-1.6 /
8 x 105 sweeps — 8 x 10° sweeps —
-1.8 — 10 x 8 x 10° sweeps - — 15 x 8 x 10° sweeps -
g oo0a § oomaf
l% z;_‘
. . ~ L 0.000 L 0.000 HIH
FIG. 2. Intensive energy as a function[dfz(In Q)] of a 32 o i o i
square Ising system. The solid line is the exact result, the dashe(&. .1 E ool
line corresponds to the BHM, and the points to the standard histo- = 4 -
< 18 14 -1.0 1 -1.8 14 -1.0

gram method. An identical sample of<8L.0° microstates was used E/322 E/32
to perform both evaluations. The energy is plotted against

[AE(ln ﬁ)]_l because of its Correspondence to a thermal equation FIG. 3. In order to pOint out the differences between the BHM
of stateE(T) (see Appendix B The strong fluctuations in both the and the standard histogram method and in order to show that the
high-energy and the low-energy region of the figure are due to poo¥sed estimators are indeed unbiased, the data emerging from the
statistics in the tails of the histograms. In the central region, thévlonte Carlo simulation of a 3Zquare Ising system are subtracted

difference between the dashed and the full line is smaller than th&om the exact resulf9]. The transition observable datstandard
line thickness. histogram datrare represented by solid linésoints.
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sk . standard histogram method + |

Broad Histogram Method =

-10 | 0'“"«"‘ -

E o )( N \\\\\ _

~ x X x XXk n

M \ :

16 F i
] 1 ] 1 I

0 1 2 3 4 5 6

In(simulation time)

FIG. 4. In order to judge the quality of the two methods, #fe
deviation of the simulation results from tke&actresult is shown for
a 32 square Ising system as a function of the simulation tiine
units of 8X 10° lattice sweeps

ods, an odd polynomial fg(M)=aM+bM3+cM®] was

fitted to the BHM data. Subtraction of the data of Fig&)5
and 3b) from this polynomial yields the plots shown in Figs.

5(c) and §d). In the figures, the BHMstandard histogram
data are represented by the solid liripsint. The plots of ! ! ' ' /
the differences show the consistency of both methods, agck-knife blocking procedure using 25 data sets, each being
both data sets scatter “randomly” around the fit function. of sample length X 1¢°]. The accuracy is improved accord-
The data emerging from the BHM, however, are much moréng to a power law with an exponent of approxmatei)l_ in
accurate than the data emerging from the standard histograB®th methods. Note, however, that at any given time the
method even |f much |onger Samp'es are used in the |atterBHM yleldS resuItS Wh|Ch are more accurate than the I’esults
For a quantitative comparison between the two methods€merging from the standard histogram method by a factor of
the mean-square deviations of the simulation results wit@PProximately 250 in the sense of the mean-square deviation.
respect to a fit to the best data obtained by the BHM ardn order to produce results of similar quality, the simulation
shown as a function of the simulation time in Fig.[8Ve
have performed a weighteg? fit of an odd polynomial

1 x 107 sweeps —
(&) 1%107 sweeps -
T
<}
=
=
<
1 x 107 sweeps —
(6} 1%107 sweegs .
= LY
E T
1
S
R 4
2 .
< .
-0.4 0.0 0.4
M /103

FIG. 5. In(a) and(b), differences of the logarithm of the density
of states Ay(InQ) for a 1F Ising system are shown for
E/LY9=0.924. In(a), a sample of length % 10" microstates is used
for the evaluation ofA,(In Q) according to both methods, whereas
in (b), the standard histogram method with a sample length of 5

AM (h’l Q)

Ay (InQ) — frar

0.08

-0.08

1x1
5x1
T

0; sweeps —
07 sweeps -

sweeps —
sweeps -

-0.4

0.0
M/10®

0.4
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0
I I standard histoglram mlethod I +
2 + Broad Histogram Method X
oL + o+ 4 .
2 + + + + 4+
R S R
NX 4} -
A o |
6 .
e 4
X x X %
X X
8 F X X X X X X XXX
I ! ! 1 ] ] LR
16 1.8 20 22 24 26 28 30 32 34

In(simulation time)

FIG. 6. In order to compare the quality of the results emerging
from the standard histogram method to those emerging from the
BHM for a 1C° Ising system, the mean-square deviations of the
simulation results with respect to a fit to the best data obtained by
the BHM are shown as a function of the simulation titimeunits of
2x10° lattice sweeps

fi(M)=aM+bM3+cM?® to the data obtained from a 5
x 10" sample by probing the transition observable. The er-
rors needed for the weighted fit have been produced by a

time in the standard histogram method has to be approxi-
mately 250 times longer than in the BHM.

C. General remarks on Sec. Il

(i) The two examples discussed in the preceding sections
show that a simulation can be accelerated dramatically by
probing the transition observable. It is not the algorithm
which speeds up the simulation, but it is the particular choice
of the observable which is measured during the simulation.
The reason for this striking difference is indeed very simple:
while every microstate, which is decided to be part of the
sample, just yields one entry in a list in the standard histo-
gram method, it might yield many transitions to neighboring
states(neighboring with respect to the interaction energy
and/or magnetizationHence, the statistics of the BHM can
be expected to be much better than the statistics of the stan-
dard histogram method. In fact, since the Ising systems under
consideration just allow for fivéseven different interaction
energy change$AE=(*+12), £8, =4, 0 and only two
magnetization changesAM = =*2) under single spin-flip
operations ind=2 (3), the setA of operators chosen above
can be expected to shorten the computational effort by a
remarkable factor, roughly proportional to the square root of
the inverse volumé ~ 9?2 of the system.

(i) The change of the interaction energy under a single

x 10 microstates is compared to the BHM with, again, sampleSPin-flip operation depends on the configuration of the spins
length 1x 107. For a better demonstration of the difference betweenil the very neighborhood of the particular spin to be flipped.
the two methods, the same data are subtracted from a fit function ik h€ typical configurations of neighboring spins vary with the
(c) and (d) (see text for the details of the ¥itin all figures, the
BHM data (standard histogram datare represented by the solid factor of proportionality of the efficiency gain in the sense of

lines (points.

interaction energy of the whole system. For that reason, the

the x? comparison introduced above can be expected to de-
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pend on the mean interaction energy of the histogram, whickJsing the definition of the transition observal§®, this can
itself depends on the simulation parametgis., the station- be shown to be equivalent to
ary distribution).
(iii) The particular way of generating the sample of mi- S S NE(S
crostates is not important in the context of a comparison of SEE , OE®.m(e uNL(S)
the BHM and the standard histogram method.

=> 5 AES, AamNZE ().
IV. CONCLUSION s&F o ESEHIAETMS) M+]AMTTA

A Monte Carlo simulation consists of two steps. The first (32

step is the generation of a sample of microstates. The seconfq1at is, the number of operations which transform mi-

step is the investigation of these microstates. ConventionallyCrostates with interaction energyand magnetizatioM into

i th_e_a|m IS to speed up the s_|mulat|on, the first step Smicrostates wittE+iAE andM +jAM by use of operators
modified while the second remains unchanged. In a quanti-

tative investigation, we have shown that a more extensiv?A‘EA“IS identical t,f).the number of opgranons which trans-
exploitation of the microstates of the sample, i.e., taking orm backwards,_ €., f“’”? states withe+iAE ar_1d M
simulation averages of the transition observable instead TLJAM to those with interaction enerdyand magnetization
just cumulating a standard histogram, can effectively speed™
up the simulation by a tremendous amount.

In an extremely straightforward implementation of the ~APPENDIX B: MICROCANONICAL EQUATIONS OF
BHM, a speed up is achieved which can be expected to be STATE

proportional to the square root of the volume of the system as mentioned in Sec. Il the differences of the logarithm
under consideration. Such a speed up seems unattainable Qyne density of state ,(In Q) are related to the microca-
an ir_np_rovemer_lt of the algorith_m of t_he simulation, i.e., by nhonical magnetic equation of state. Indeed, E2F) is the
modifying the first step of the simulation. _microcanonical magnetic equation of state in a discrete no-
Even though the transition observable seems to be builiyion (appropriate for the description of finite Ising sys-
for discrete spin systems, Mam and Herrman5] have  tomg which converges towards the magnetic equation of
already shown that the method can be transferred to continate of the infinite system,
ous spin systems. An extension of this method to “nonspin”

systems such as polymers might be a topic for future inves- a .
tigations. — Bh(e,m)= ——lim L 9nQ(L%,Lm,L™ 1), (33

L—oo

ACKNOWLEDGMENTS in the thermodynamic limilL—«. Here, 8 is the inverse
temperatureh is an external magnetic field, and=L "9E
and m:=L %M are the intensive counterparts Bfand M,
rrespectively. The difference of the logarithm of the reduced
density of state$23) converges towardg(e, 8h)|,—q of the
infinite system for zero external field and can serve to com-
pute zero-field properties of the systefithe inverse tem-
APPENDIX A: MICROREVERSIBILITY peratureB(e,h) is the derivative with respect to of the
Let A be a set of operators acting on configuration Spacé.egendre transform of lim...L~“In (L% L'mL ™) \,N'th
I, respect tom. l\_lote th_at €,B) and (m,Bh) are the pairs of
conjugate variables in the entropy formalism
Note that it is unnecessary and a rather roundabout way to
AC{A:ASel s ¥V Seld, (29) convert the thqs obtained dgta into the commqnly used ca-
= nonical quantities. For details on the investigation of phase

such that for allA e A, there exists a unique inverse operator ransitions in a microcanonical approach and a microcanoni-
B=A"lcA ie cal finite-size scaling theory, s¢8].
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APPENDIX C: DETAILS OF THE MONTE CARLO
VAe A 3! Be A: BAS=S. (30 SIMULATION
1. Simulation of thed=2, L =32 Ising lattice

Then, A is said to showmicroreversibility From the micro-

reversibility of A4, it follows immediately that the number of A Monte Carlo simulation of a $2Ising system with
operatorsA e A which transformSinto S equals the number periodic boundary conditions was performed. The stationary
P < q distribution of the underlying Markov process was chosen to

of operatorsA e A which transformS back intoS: be proportional to the Boltzmann weight(E(S),M(S))
cexp{ — H(S)/T} with simulation parametere=0 and T
=2.269(see Sec. Il A for the definition of the Ising Hamil-
o - tonian. We have implemented a sequential lattice update
OasE= Os A% 31
A;A ASS AgA SAS S with a Metropolis-type [10] transition rate T(S—S')
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=min{1w(S')/w(S)} and have sampled eveiy’th con-  distribution was chosen to bew(E(S),M(S))*{[E,

figuration only. After “equilibration” (6.4<10° lattice — E(S)1/No}Mo~?% i.e., independent oM(S) again. The

sweeps have been discargledeveral successive samples, Simulation parameters were chosen toH-=1586 andN,

each of length & 10°, were taken. =1000 (for a d_etal_led discussion and interpretation of this
stationary distribution, sefl1]). The way of updating the

: . . , lattice configurations is the same as for the simulation of the

2. Simulation of the d=3, L =10 Ising lattice 32%-Ising sygstem(see Appendix € After “equilibration”

A Monte Carlo simulation of a T0Ising system with pe- (2x 10° lattice sweeps have been discarjesveral succes-
riodic boundary conditions was performed. The stationarysive samples, each of lengthx2A(®, were taken.
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